
Software Engineering

and Architecture

Frameworks

Motivation

• I have presented some design principles

– 3-1-2 process: encapsulate variation, program to an interface and

compose behavior using delegation

– Compositional design // SOLID principles

• it is better to reuse code by delegation than inheritance

• Smaller, cohesive roles collaborating is better than a big blob

– Iterative and Incremental search for variability

• supported by TDD

• supported by refactoring

• ... and on the way we discovered some patterns

CA@AU Henrik Bærbak Christensen 2

Abstracting

• What I have actually done is to show you the pieces that

together form the puzzle called frameworks:

• Framework:

– A framework is a set of cooperating classes that make up a

reusable design for a specific class of software.

• Exercise:

– Is the pay station a framework given this definition?

– Argue why MiniDraw is a framework.

[GoF]

CA@AU Henrik Bærbak Christensen 3

Framework Characteristics

• A framework is characterized by

– reuse of both design as well as executable code

– reuse within a well defined domain

• Java Swing is for GUI’s, not for banking…

– high reuse percentage (70-90%)

– must be customized for customer’s particular need

• Examples:

– Eclipse & IntelliJ IDE and Gradle plug-in architecture

– Android / IOS

– Web server frameworks (Jetty, Spark-Java, …)

– HTML DOM and JavaScript

– … MiniDraw
CA@AU Henrik Bærbak Christensen 4

Other Definitions

CA@AU Henrik Bærbak Christensen 5

Common aspects
• Skeleton / design / high-level language

– … provide behavior on high level of abstraction: a

design/skeleton/architecture

• Application/class of software

– … has a well defined domain where it provides behavior

• Cooperating / collaborating classes

– … define and limit interaction patterns (protocol) between well

defined roles

• Customize/abstract classes/reusable/specialize

– … can be tailored to a concrete context

• Classes/implementation/skeleton

– ... is reuse of code as well as reuse of design

CA@AU Henrik Bærbak Christensen 6

Variability points = Hotspots

Applications from frameworks

• A framework based application is composed of three

portions of code

– The framework code (external, third party)

– The framework customization code (our own ‘tailoring’ code)

– Non-framework related code (own domain code)

• Example: HotStone project

– MiniDraw framework (basic 2D GUI control)

– Customization code (adapt MiniDraw til HotStone graphics)

– HotStone domain code (card draw, attacking, …)

CA@AU Henrik Bærbak Christensen 8

Which leads to...

• Traditionally one distinguish between

– Developers: Developing the software for end users

– End users: Using the software

• Frameworks require one additional role

– Framework developers: Develops the framework

– Application developers: Adapt the FW for users

– End users: Using the software

• I.e.: The end users of a framework are themselves

software developers!

CA@AU Henrik Bærbak Christensen 9

HotSpots…

”Separate code that changes from

the code that doesn’t”

• Hot spots are also known as:

– Hooks / hook methods / callback functions

– Variability points (our favorite term)
CA@AU Henrik Bærbak Christensen 10

Example

• The pay station system has hotspots regarding

– receipt type

– rate policy

– display output

– weekend determination

• but frozen spots, fixed behavior, concerning

– coin types (payment options), numerical only display, only buy

and cancel buttons, etc.

• Domain: Pay stations

– no reuse in the electronic warfare domain ☺

CA@AU Henrik Bærbak Christensen 11

Frozen spots

• Frozen is important : keep the code in the fridge!

• Code modifications means unthawing and freezing again

  

CA@AU Henrik Bærbak Christensen 12

Why...

• I have realized that this point is so natural to me that I in

early teaching simply has forgotten to emphasize it.

• Why

– Consider Java Swing

• If you had to rewrite code in 8 different places in the Swing library to

add a new special purpose visual component

– Then you had to

• Understand the Swing code in deep detail (costs!)

• Reintroduce special purpose code every time Sun/Oracle releases a

new version of Swing (costs!!!)

CA@AU Henrik Bærbak Christensen 13

Thus, I can get the Swing source code
but I should still not change it!

Even More Why…

• Most of the time – you are of course not allowed to

change the code !

• Apple iOS

– Is closed-source so you can of course

not in any way change that

• And if you could, all iPhone users had

to install your version of iOS on their

phone to use your great app… That is not feasible, right?

CA@AU Henrik Bærbak Christensen 14

Morale

• You adapt a framework to your particular needs by

– Change by addition, not by modification!!!

– Open for extension, closed for modification

• You

– Implement interfaces or extend existing classes

• Concrete implementations, real behavior filling out the

responsibilities defined by the framework

– Tell the framework to use your implementations...

CA@AU Henrik Bærbak Christensen 15

Which again leads to...

• If the framework has to use my concrete implementations

then...

• It cannot itself create these objects

– If MiniDraw itself defined

• Drawing drawing = new CompositionalDrawing();

– Then it was an application (fixed behavior), not a framework

(adaptable behavior).

• Then ... How can it create objects?

CA@AU Henrik Bærbak Christensen 16

Dependency Injection

• Typically an (OO) framework would use factory

techniques like abstract factory

– Or prototype or factory method patterns...

– Or reading configuration files, or using conventions

• Ruby on Rails, Grails, Maven, IntelliJ, Eclipse, use particular named

files in specific directory paths to configure the frameworks

• Or – by inheritance based techniques…

– Android OS, LibGdx, and many others…

CA@AU Henrik Bærbak Christensen 17

Customization Techniques

CA@AU Henrik Bærbak Christensen 18

Techniques to define hotspots

• We have object oriented composition to define hotspots.

We have also looked at other techniques

– Parameterization, overriding superclass methods

CA@AU Henrik Bærbak Christensen 19

HotSpots

• Exercise: List techniques to make the hotspots

– Hint: Consider techniques used in

• MiniDraw

• Swing

• Collection classes

• Eclipse

• C library sorting algorithms

• Intel i7 interrupt vector handling

• Functional languages

• Amiga libraries ☺

• Does a Framework require object-orientation?

CA@AU Henrik Bærbak Christensen 20

A good framework...

• ... Must give ”return on investment”

– Investment: ”I have to learn how to use it”

– Return: ”I get reliable software that does a lot”

• Android/Swing/MiniDraw/...

– Consider writing the Android OS yourself!

CA@AU Henrik Bærbak Christensen 21

In the old times...

CA@AU Henrik Bærbak Christensen 22

You made the GUI
using drawLine !!!

Framework Protocol

Design and Code Reuse

• “Cooperating / collaborating classes

– … define and limit interaction patterns (protocol) between

well defined roles”

• Frameworks require users (=developers) to understand

the interaction patterns between objects in the FW and

their own customization objects. That is, understand the

protocol.

– Ex: Understand the editor tool protocol in MiniDraw

CA@AU Henrik Bærbak Christensen 24

Where is the protocol?

• So: The framework dictates the protocol!

• The question is: How?

CA@AU Henrik Bærbak Christensen 25

Protocol

• The protocol arises because objects in the framework
invokes methods on objects that are defined by you.

• These methods/functions/procedures that are predefined
by the framework to be ‘overridable’ or customizable are
the hotspots.

• A framework contains frozen code with embedded
hotspots where your (unfrozen) code may be called.

CA@AU Henrik Bærbak Christensen 26

Inversion of Control

• This property of frameworks is called

• Inversion of Control

• (”Hollywood principle: do not call us, we will call you.)

• The framework dictates the protocol – the

customization/hotspot code just has to obey it!

– “Do something when you are called”

CA@AU Henrik Bærbak Christensen 27

Compare ‘traditional’ reuse

• Another type of reuse of code (more than design) is

libraries

• I have never written my own cosine or random function –

have you?

– And a long time since I wrote a collection class, like List<T> ☺

• There are lot of libraries of usable behavior out there that

does not invert control.

CA@AU Henrik Bærbak Christensen 28

Framework Examples

HTML DOM and JavaScript

• The “operating system” of browsers

– Event-Driven Programming of web pages

• The DOM is an object model of the page’s contents

– In JavaScript you can associate callback functions with individual

elements of that object

CA@AU Henrik Bærbak Christensen 30

DOM and JavaScript

• The HTML DOM is a Framework in that each document

element can be associated with HotSpots (event

listeners). You can define these hotspots by injecting

JavaScript functions as callback functions.

• The rendering of the DOM is a (lot of) FrozenSpot.

CA@AU Henrik Bærbak Christensen 31

HCI Course

• WarpTalk Mandatory Exercise in HCI
– Disclaimer: I only spent 5 minutes and have not followed the course, so forgive if I am a bit of

here ☺

– You fill in the hotspots, like onMessage() which allows you to adapt callback from server…

CA@AU Henrik Bærbak Christensen 32

Examples: Android

CA@AU Henrik Bærbak Christensen 33

You do not call
AndroidOS – it will call

you!

Examples: Android

CA@AU Henrik Bærbak Christensen 34

You do not call
AndroidOS – it will call

you!

Example: Android GPS

• To get continuous tracking of your location, you can add

an LocationListener (an Observer role)…

CA@AU Henrik Bærbak Christensen 35

Example: LibGDX

• Game Architecture:

– loop at ~60 fps

• HotSpots for

– Rendering, input handling, power management, sprite collisions,

CA@AU Henrik Bærbak Christensen 36

Template Method

The central OO pattern to separate

frozen and hot code

The core of the inverted control

CA@AU Henrik Bærbak Christensen 37

Template Method

• Intent (Original GoF statement)

– Define the skeleton of an algorithm in an operation,

deferring some steps to subclasses. Template Method

lets subclasses redefine certain steps of an algorithm

without changing the algorithm's structure.

• Restatement

– Some steps in the algorithm are fixed but some steps I

would like to keep open for future modifications to the

behavior

CA@AU Henrik Bærbak Christensen 38

GoF Structure

• The structure in GoF is that of subclassing

CA@AU Henrik Bærbak Christensen 39

The Multi-Dimensional Variability

• Subclassing handles multi-dimensional variability badly...

• Consider

– Three variants of step1() required

– Four variants of step2()

– Any combination feasible

• How many subclasses?

CA@AU Henrik Bærbak Christensen 40

Conclusion

• Conclusion:

Favor object composition

over class inheritance

CA@AU Henrik Bærbak Christensen 41

Exercise

• Rewrite the GoF structure to its compositional

equivalent that is behavioral equivalent but

follows the three principles of flexible design.

CA@AU Henrik Bærbak Christensen 42

Interface Segregation Principle

• The ISP comes in

handy

– Separate each

cohesive (subrole)

into its own interface

– HookInterface1 and

HookInterface2

• Improved version:

CA@AU Henrik Bærbak Christensen 43

Template Method Terminology

• These two variants have a name:

– Original: subclassing + override hook methods

– New: interface implementation + delegate to hooks

CA@AU Henrik Bærbak Christensen 44

Exercise

• Identify template method in the pay station:

public void addPayment(int coinValue) {

 switch (coinValue) {

 case 5:

 case 10:

 case 25: break;

 default:

 throw new IllegalCoinException("Invalid coin: "+coinValue+" cent.");

 }

 insertedSoFar += coinValue;

 _timeBought = rateStrategy.calculateTime(insertedSoFar);

 }

CA@AU Henrik Bærbak Christensen 45

Exercise

• addPayment is template

– A) coin validation; B) accumulation; C) time computation

public void addPayment(int coinValue) {

 switch (coinValue) {

 case 5:

 case 10:

 case 25: break;

 default:

 throw new IllegalCoinException("Invalid coin: "+coinValue+" cent.");

 }

 insertedSoFar += coinValue;

 _timeBought = rateStrategy.calculateTime(insertedSoFar);

 }

CA@AU Henrik Bærbak Christensen 46

Frozen code 1

Frozen code 2

Hot code

Exercise

• How does template method relate to the inversion of

control property of frameworks?

CA@AU Henrik Bærbak Christensen 47

FRS Structure

CA@AU Henrik Bærbak Christensen 48

Another Case for Composition

CA@AU Henrik Bærbak Christensen 49

Mixing Two Frameworks

• Based upon the inheritance based template

method

CA@AU Henrik Bærbak Christensen 50

Mixing Two Frameworks

• But it does work using compositional template

method

CA@AU Henrik Bærbak Christensen 51

Example: HotStone GUI

• HotStoneDrawing implements Drawing,

GameObserver

CA@AU Henrik Bærbak Christensen 52

HotStoneDrawing

HotStone Domain MiniDraw

<<i>>
Drawing

<<i>>
GameObserver

StandardFigureCollection

